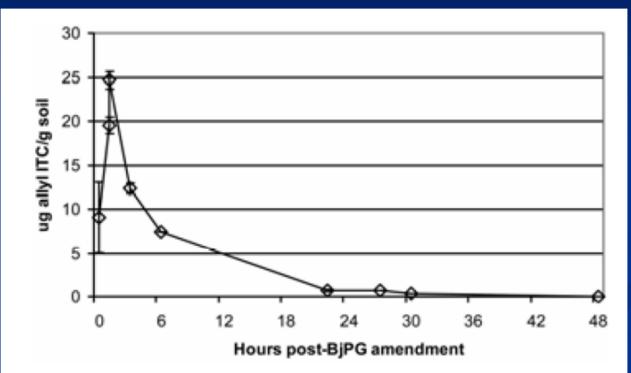
The Chemistry of Biofumigation & Brassicaceae Seed Meals

Michael Cohen Department of Biology, Sonoma State University

December 18, 2009 AAIE Nematode Seminar Napa, California

- Brassicaceae seed meals (BSM) as soil amendments
- Isothiocyanate (ITC) release from glucosinolates
- Toxicity of ITCs
- Application of BSM in nematode control
 Case study: apple replant disease

Soil amendment with Brassicaceae seed meals (BSM)



Disease control following BSM application

Biofumigation by isothiocyanates
 Important in control of nematodes and oomycetes

Enhancement of plant disease resistance
 BSM-induced shift in the soil microbial community

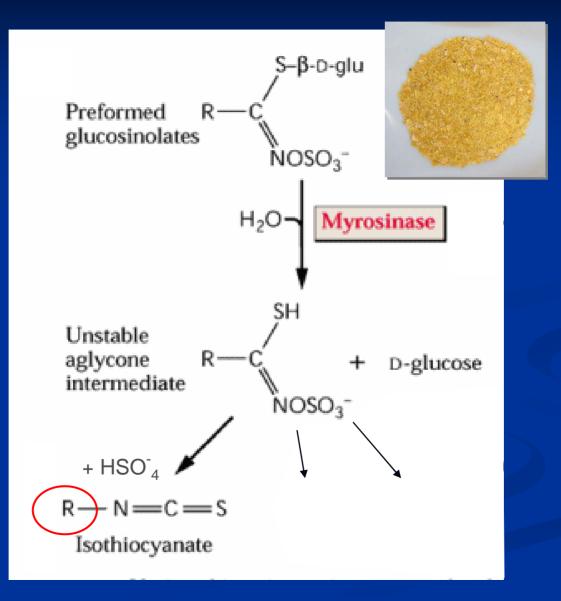

Release of ITC from BSM amended soil

Fig. 1. Temporal pattern of allyl-isothiocyanate emission from Columbia View orchard soil amended with *Brassica juncea* cv. Pacific Gold seed meal (BjPG) as determined by monitoring concentration in the headspace of a chamber by gas chromatography. Seed meal was added to soil at a concentration of 0.5% (vol/vol). Bars = standard deviation of the mean.

Mazzola et al. (2007) Phytopathology 97:454-460

ITC release from glucosinolate hydrolysis

ITC toxicity

Type of ITC
Concentration of ITC
Nematode species

BSM glucosinolate composition varies

TABLE 1. Isothiocyanate, origin, structure, molecular weight, and common name of parent glucosinolate tested^a

Isothiocyanate	Plant species	Plant part	Structure of side chain R	Molecular weight	Glucosinolate common name
Allyl	Armoracia lapathifolia, Brassica juncea, B. napus, B. oleraceae	Seed, leaf, root, stem	 CH2 (CH) ₂ CH ₃	99.2	Sinigrin
Benzyl	Carica papaya, B. hirta, Lepidium sativum	Seed, leaf, root, stem	CH2	149.2	Glucotropeolin
Butyl	A. lapathifolia, Capparis flexuosa	Seed, leaf, root, stem	I СН2 (СН) ₂ СН ₃	115.2	
Ethyl	Lepidium menziesi	Seed	CH ₂ CH ₃	87.1	Glucolepdiin
Methyl	Capparis spp.	Seed	CH3	73.1	Glucocapparin
Phenyl	A. lapathifolia		$\neg \bigcirc$	135.2	
4-Methylsulfinyl(butyl)	B. oleraeae	Seed, leaf, root, stem	1 CH2 (CH) 3-S-CH3	177.3	Glucoraphanin
2-Phenylethyl	A. lapathifolia, B. juncea, B. napus, B. hirta	Seed, leaf, root, stem	 CH ₂ -CH ₂	163.2	Gluconasturtiin

^a Data from Fahey et al. (11) and Brown and Morra (5).

Zasada, I. A., and Ferris, H. 2003. Sensitivity of *Meloidogyne javanica* and *Tylenchulus semipenetrans* to isothiocyanates in laboratory assays. Phytopathology 93:747-750.

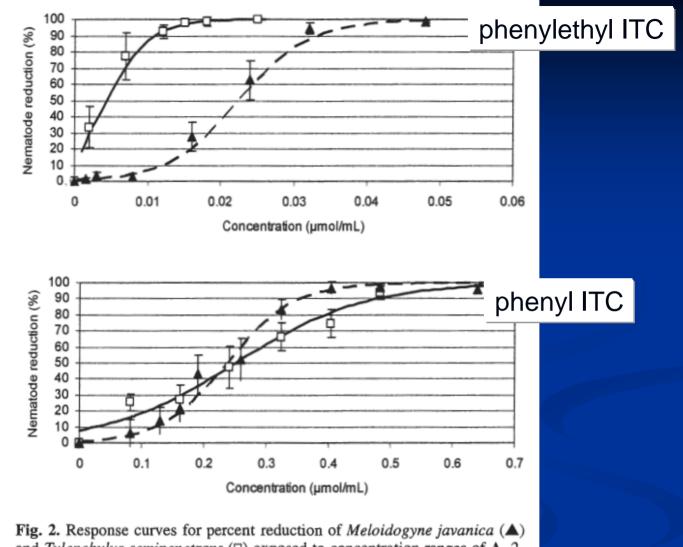
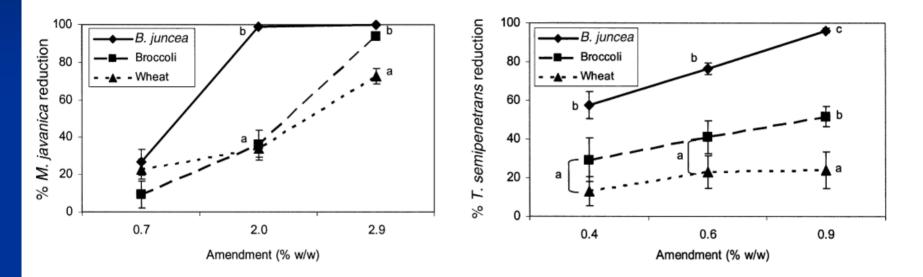
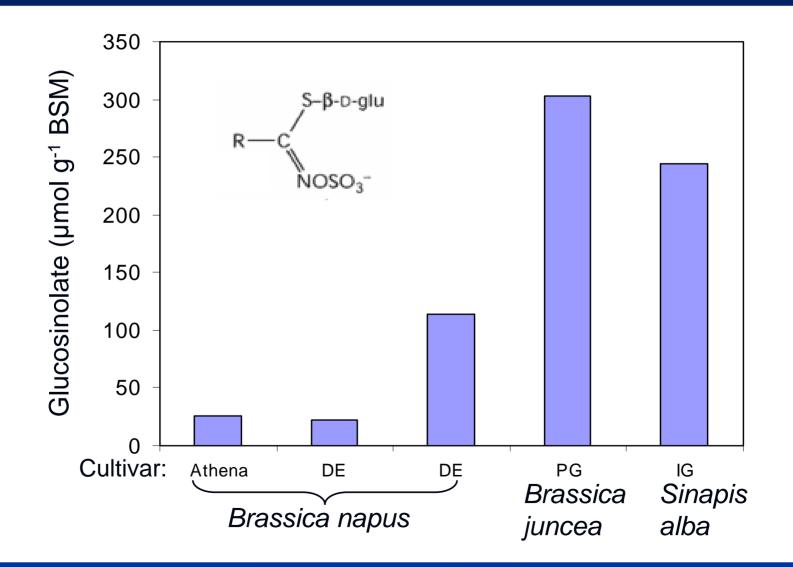



Fig. 2. Response curves for percent reduction of *Meloidogyne javanica* (\blacktriangle) and *Tylenchulus semipenetrans* (\square) exposed to concentration ranges of A, 2-phenylethyl and B, phenyl isothiocyanates. Vertical bars represent the 95% confidence interval for each mean.

Zasada, I. A., and Ferris, H. 2003. Sensitivity of *Meloidogyne javanica* and *Tylenchulus semipenetrans* to isothiocyanates in laboratory assays. Phytopathology 93:747-750.

Nematode suppression with brassicaceous amendments: application based upon glucosinolate profiles Soil Biology & Biochemistry 36 (2004) 1017–1024

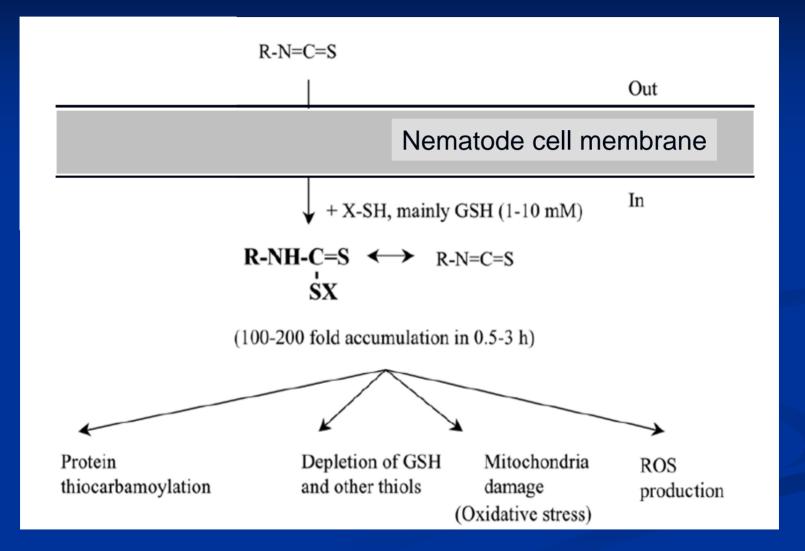

I.A. Zasada*, H. Ferris

Plant	µmol glucosinolate / g DW	major ITC released
B. juncea	110	allyl
Broccoli	2.4	4-methylsulphinylbutyl
Wheat		

Greenhouse

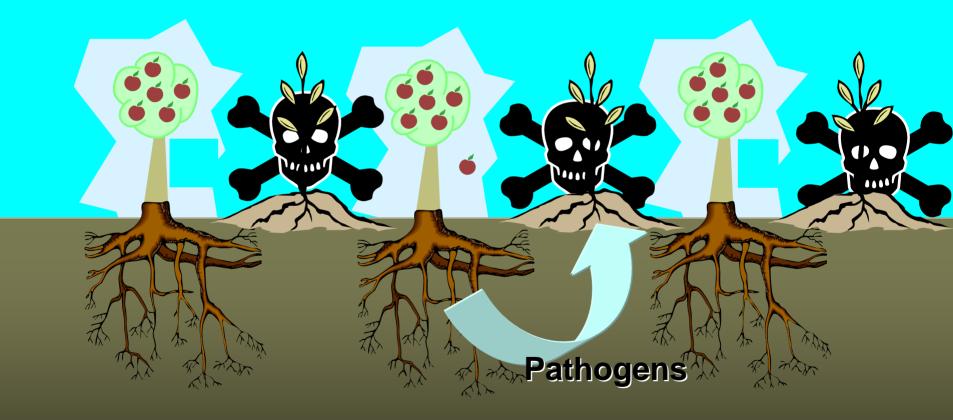
BSM glucosinolate levels vary

ITC half-life is diminished by organic soil constituents

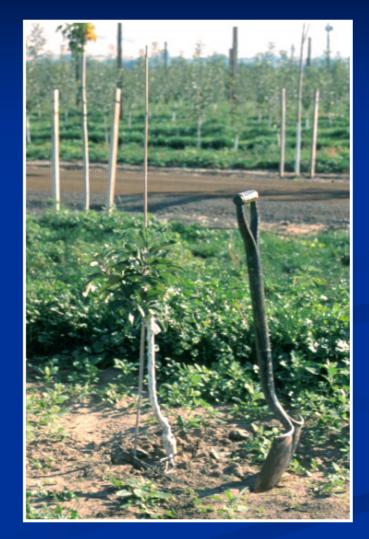

Table 2. Correlation of Soil Characteristics with Transformation Rates of Allyl Isothiocyanate (AI)

compd	pH	organic C	inorganic C	total N	clay	sand
AI	0.2296	-0.6666^{a}	0.2129	-0.6292^{a}	0.1256	-0.1307

^{*a*} Correlation coefficients that are significant at P < 0.05.


J. Agric. Food Chem. 1995, 43, 1935-1940

Cellular effects of ITCs


BSM application in nematode control: Apple replant disease

Replant Disease

Apple Replant Disease: Moxee, Washington

Virgin

Replant

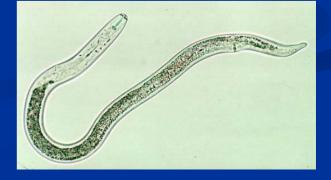
Apple Replant Disease: Manson, Washington

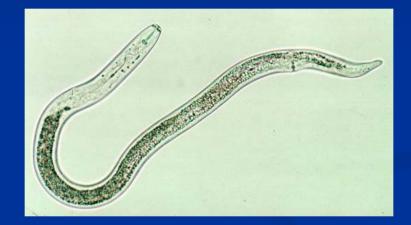
Virgin

Replant

7th leaf

Pathogens commonly responsible for apple replant disease:


Fungi
 Rhizoctonia solani


Oomycetes
 Pythium spp.

Nematodes
 Pratylenchus penetrans

BSM effect on nematodes

Two mechanisms of initial BSMinduced nematode suppression

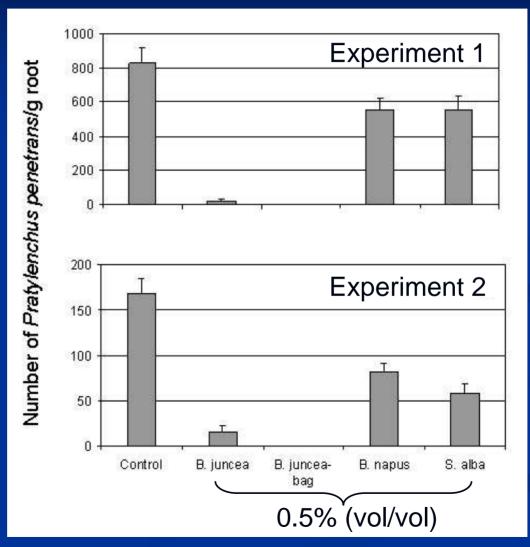
glucosinolate \rightarrow ITC R-NH₂ \rightarrow NH₃

Seed meal nutrients

Element	Percent composition
Nitrogen	5.6 - 6.8%
Phosphorus	1.2 - 1.4%
Potassium	1.1 - 1.5%
Sulfur	0.9 – 1.6%

Duration of nematode suppression depends on BSM type

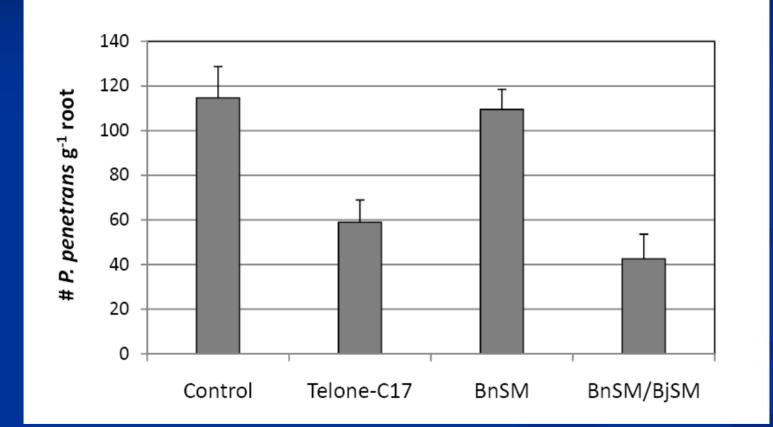
TABLE 2. Effect of Brassicaceae seed meal amendment on recovery of *Pratylenchus penetrans* recovered from soil and roots of MM106 rootstock


	P. penetrans g ⁻¹ of soil ^z		
Treatment ^y	Preplant	3 months post plant	6 months post plant
Control	217 b	115 b	643 c
DE B. napus*	19 a	16 a	281 b
AT B. napus*	5 a	11 a	177 b
IG Sinapis alb	a 7a	1 a	246 b
PG B. juncea	1 a	4 a	2 a

*Low glucosinolate

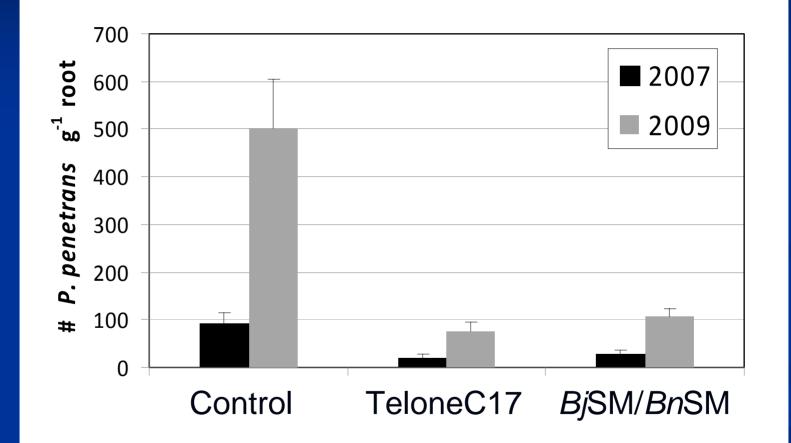
Greenhouse

Mazzola et al. (2007) Phytopathology 97:454-460


Superior protection conferred by *Brassica juncea* seed meal

Greenhouse GC orchard soil Various rootstocks

Mazzola et al. (2009) Plant Disease 93:51-57


Orchard results: Control of lesion nematode by a BSM mixture

Mazzola & Brown (2009) unpublished

Commercial organic orchard Planted May 2006 with M26 rootstock; harvested October 2006

Orchard results: Sustained control of lesion nematode

Commercial organic orchard Mazz Planted May 2007 with Gala / M26 rootstock

Mazzola & Brown (2009) unpublished

Conclusion

 BSM mixtures have potential application as pre-plant soil treatments for control of replant diseases.

Acknowledgements

USDA-ARS Tree Fruit Research Laboratory

Dr. Mark Mazzola Sheila Ivanov

Sonoma State University

Aaron Agostini

http://cohenlab.pbworks.com/

